Skip to contents

Overview

In this tutorial, we will demonstrate how to infer spatial ecotype (SE) abundances from bulk gene expression profiles, including bulk RNA-seq and Visium spatial transcriptomics.

First load required packages for this vignette

Deconvolution of bulk RNA-seq data to infer SE levels

We will start with the SE deconvolution from bulk RNA-seq. We will use bulk RNA-seq data from TCGA melanoma (SKCM) samples for demonstration. The gene expression matrix is available at SKCM_RNASeqV2.geneExp.tsv, which is a Transcripts Per Million (TPM) matrix obtained from the PanCanAtlas.

Loading bulk expression of TCGA melanoma samples

drive_deauth() # Disable Google sign-in requirement
drive_download(as_id("14RwnoxhIkGeLp6GXehmAXLvy8Ii2_COU"), "SKCM_RNASeqV2.geneExp.tsv", overwrite = TRUE) # download data from googledrive
bulkdata <- fread("SKCM_RNASeqV2.geneExp.tsv", sep = "\t", data.table = FALSE)
rownames(bulkdata) <- bulkdata[, 1] ## Set the first column as row names
bulkdata <- bulkdata[, -1] ## Drop the first column
head(bulkdata[, 1:5]) ## TPM matrix
##       TCGA.3N.A9WB.06 TCGA.3N.A9WC.06 TCGA.3N.A9WD.06 TCGA.BF.A1PU.01
## A1BG         381.0660         195.182        360.8790        176.3990
## A1CF           0.0000           0.000          0.7092          0.0000
## A2BP1          0.0000           0.000          6.3830          1.2987
## A2LD1        250.1980         160.755         97.1986        163.2340
## A2M         2209.5200      169237.000      18257.9000       6716.4500
## A2ML1          7.2698           0.000          0.0000          7.7922
##       TCGA.BF.A1PV.01
## A1BG         216.8470
## A1CF           0.0000
## A2BP1          0.0000
## A2LD1         60.8727
## A2M         1740.5800
## A2ML1          0.5977

SE deconvolution

The DeconvoluteSE function infers SE abundances in bulk tissue samples. Users can either use the default model, which estimates the abundances of predefined SEs, or apply a custom model to infer the abundance of newly defined SEs from bulk gene expression data. Before prediction, DeconvoluteSE automatically applies a log₂ transformation (if the maximum value exceeds 80) and standardizes the data so that each gene has a mean of 0 and a unit variance. To ensure reliable standardization, we recommend a minimum of 20 samples. For smaller datasets, we recommend to combine them with a larger dataset for normalization prior to running DeconvoluteSE.

The default model is trained on pseudobulk gene expression data and predicts the abundances of nine predefined SEs along with a nonSE group, which primarily includes cancer cells and cells not associated with any SEs. The predicted SE and nonSE abundances for each sample sum to 1, making them comparable across samples.

Note: 1) SE abundances are directly comparable across samples, enabling the analysis of SE distribution patterns under different conditions. 2) Since the number of cell states varies across SEs, direct abundance comparisons between different SEs or with the nonSE group may not be meaningful. SEs represent distinct spatial multicellular communities, each defined by a unique combination of cell states.

Using default model

sefracs <- DeconvoluteSE(bulkdata, scale = TRUE)
head(sefracs)
##                      NonSE        SE1        SE2        SE3        SE4
## TCGA.3N.A9WB.06 0.19380234 0.05372667 0.16735600 0.12581663 0.07216666
## TCGA.3N.A9WC.06 0.05293689 0.13901340 0.08427617 0.08372047 0.04243859
## TCGA.3N.A9WD.06 0.27200075 0.17114795 0.06288761 0.05641549 0.10166721
## TCGA.BF.A1PU.01 0.16899510 0.13618971 0.06501306 0.09269615 0.17313296
## TCGA.BF.A1PV.01 0.12078283 0.06921834 0.05970319 0.16813008 0.11059648
## TCGA.BF.A1PX.01 0.21398415 0.04019509 0.08906215 0.04499893 0.08561680
##                        SE5          SE6          SE7        SE8        SE9
## TCGA.3N.A9WB.06 0.06884572 6.495692e-02 4.610809e-03 0.16471168 0.08400658
## TCGA.3N.A9WC.06 0.05623098 6.781589e-03 3.162253e-01 0.15964259 0.05873404
## TCGA.3N.A9WD.06 0.02720647 8.345475e-02 9.239064e-02 0.07760029 0.05522884
## TCGA.BF.A1PU.01 0.13404194 3.330034e-16 3.330034e-16 0.02543647 0.20449461
## TCGA.BF.A1PV.01 0.14669963 1.677658e-01 1.260194e-03 0.06961553 0.08622790
## TCGA.BF.A1PX.01 0.09930790 7.771710e-02 1.239738e-01 0.12590726 0.09923685

Note: If your data are already standardized to have zero mean and unit variance per gene, set scale = FALSE.

Using custom model

After identifying SEs using SpatialEcoTyper or MultiSpatialEcoTyper, users can develop a Non-Negative Matrix Factorization (NMF) model to deconvolve SEs from bulk tissue samples, following the tutorial below.

Development of SE deconvolution models

Users can create an NMF model to deconvolve SEs from bulk gene expression data. The training data can be derived from pseudo-bulk mixtures created by aggregating single-cell transcriptomics data. In this tutorial, we will generate pseudo-bulk mixtures using single-cell RNA-seq data from a melanoma sample, which is also featured in the Recovery of Spatial Ecotypes from Single-Cell Gene Expression Data.

The raw count for this sample is available at WU2161_counts.tsv and SE recovery results are available at WU2161_RecoveredSEs.tsv.

Loading data

# Download single-cell gene expression matrix and SE recovery results.
# The downloads should be finished within 1min.
drive_download(as_id("17VAeOnz6vTt2s0ZeTrK1kITdJ3Yus4ei"), "WU2161_counts.tsv", overwrite = TRUE)
drive_download(as_id("17kFjOHhmWxWAKm-LDqy6wV27o5lvz8L2"), "WU2161_RecoveredSEs.tsv", overwrite = TRUE)
# Load single-cell gene expression matrix.
counts = fread("WU2161_counts.tsv", sep = "\t", data.table = FALSE)
rownames(counts) = counts[, 1] ## Set the first column as row names
counts = counts[, -1] ## Drop the first column
head(counts[, 1:5])

# Load SE recovery results
SEs = read.table("WU2161_RecoveredSEs.tsv", sep = "\t", row.names = 1, header = TRUE)
SEs = SEs[match(colnames(counts), rownames(SEs)), 1] # extract SE predictions
length(SEs)
table(SEs)

Note: For demonstration purposes, we used 1,337 cells grouped into SEs to create pseudo-bulk mixtures. While this limited cell number offers a basic example, it may not fully capture the diverse characteristics of SEs, potentially affecting the robustness of model training and subsequent SE recovery. In practice, we recommend using a more comprehensive dataset that accurately reflects the properties of SEs, ensuring that the training process results in a reliable recovery model.

Creating pseudobulk data

The CreatePseudobulks function will be used to create pseudo-bulk mixtures from single-cell (spatial) transcriptomics data with all cells grouped into SEs. It samples cell fractions from a Gaussian distribution, sets negative fractions to 0 and re-normalizes fractions to sum to 1 across all SEs. Based on the resulting fractions, it samples 1,000 cells per pseudo-bulk mixture with replacement, aggregates their transcriptomes in non-log linear space, and normalize the resulting mixture to logarithm CPM using Seurat’s NormalizeData.

result = CreatePseudobulks(counts = counts, groups = SEs, n_mixtures = 100)
head(result$Mixtures[, 1:5]) ## Gene expression matrix of pseudobulks
head(result$Fracs) ## SE fractions in pseudobulks

Training

The NMFGenerateW function will be used to train an NMF model for SE deconvolution based on the provided SE fractions and gene expression matrix. Before applying NMF, each gene’s expression is scaled to have a mean of 0 and unit variance (recommended). To meet the non-negativity requirement of NMF, the expression matrix is transformed using the posneg method. This transformation splits the expression matrix into two matrices: one containing only positive values and the other containing the absolute values of the negative values. These two matrices are then concatenated to form the final training data for the NMF model.

W = NMFGenerateW(t(result$Fracs), result$Mixtures)
## This step should be done within 1 min
head(W)

The resulting W matrix can be used to infer SE sbundances from bulk gene expression profiles by using the DeconvoluteSE function.

Deconvolution

Then you can use the new model for SE deconvolution by specifying the W parameter:

sefracs <- DeconvoluteSE(bulkdata, W = W)

Visualizing SE abundances across samples

library(grid)
HeatmapView(sefracs, breaks = c(0, 0.15, 0.3), 
            show_row_names = FALSE, cluster_rows = TRUE)

Deconvolution of Visium data to infer SE levels

In this tutorial, we will demonstrate how to infer SE levels in Visium spots using a breast cancer sample. The expression data can be accessed from: V1_Breast_Cancer_Block_A_Section_1_filtered_feature_bc_matrix.h5, which was obtained from 10x Genomics datasets.

Loading data

First, download the data from Google Drive

drive_download(as_id("15D9LgvZmCZUfsL62cD67JMf8Jcq_UyuB"), "V1_Breast_Cancer_Block_A_Section_1_filtered_feature_bc_matrix.h5", overwrite = TRUE)
drive_download(as_id("15NTZc1HrW_gLS_pmi1ckYLw30kNarf4w"), "V1_Breast_Cancer_Block_A_Section_1_tissue_positions_list.csv", overwrite = TRUE)
## This download should be done within 1 min.

Load the expression data into R using the Read10X_h5 function from the Seurat package.

if(!"hdf5r" %in% installed.packages()) BiocManager::install("hdf5r")
require("hdf5r")
# Load Visium gene expression matrix. Rows are genes, columns are spots.
visiumdat <- Read10X_h5("V1_Breast_Cancer_Block_A_Section_1_filtered_feature_bc_matrix.h5")
# normalize the expression data
visiumdat <- NormalizeData(visiumdat)

meta <- read.csv("V1_Breast_Cancer_Block_A_Section_1_tissue_positions_list.csv", 
                 header = FALSE, row.names = 1)
colnames(meta) <- c("tissue", "row", "col", "imagerow", "imagecol")
meta <- meta[colnames(visiumdat), ]
head(meta)
##                    tissue row col imagerow imagecol
## AAACAAGTATCTCCCA-1      1  50 102    15632    17782
## AAACACCAATAACTGC-1      1  59  19    17734     6447
## AAACAGAGCGACTCCT-1      1  14  94     7079    16716
## AAACAGGGTCTATATT-1      1  47  13    14882     5637
## AAACAGTGTTCCTGGG-1      1  73  43    21069     9712
## AAACATTTCCCGGATT-1      1  61  97    18242    17091

SE deconvolution

The process of SE deconvolution for Visium data is the same as for bulk RNA-seq data described above. We will use the same DeconvoluteSE function. Here we’ll run SE deconvolution using the default model. For additional details on parameters and options, please refer to Deconvolution of bulk RNA-seq data to infer SE levels above.

sefracs <- DeconvoluteSE(visiumdat, scale = TRUE)
head(sefracs)
##                         NonSE        SE1        SE2        SE3        SE4
## AAACAAGTATCTCCCA-1 0.05232099 0.05041149 0.10012837 0.07571055 0.12156545
## AAACACCAATAACTGC-1 0.18364314 0.09826717 0.09954508 0.15312700 0.17172335
## AAACAGAGCGACTCCT-1 0.07892363 0.18628624 0.05614935 0.14666072 0.08793592
## AAACAGGGTCTATATT-1 0.01745807 0.10309868 0.06961478 0.17559241 0.05575361
## AAACAGTGTTCCTGGG-1 0.15862994 0.02678254 0.23718907 0.01112368 0.08659772
## AAACATTTCCCGGATT-1 0.23539977 0.08190824 0.10742201 0.10051098 0.04179825
##                           SE5        SE6         SE7        SE8        SE9
## AAACAAGTATCTCCCA-1 0.23954159 0.03325773 0.094210882 0.12824410 0.10460885
## AAACACCAATAACTGC-1 0.04421240 0.03536673 0.032214566 0.07797078 0.10392979
## AAACAGAGCGACTCCT-1 0.05905418 0.08619887 0.191601732 0.02817472 0.07901464
## AAACAGGGTCTATATT-1 0.06850337 0.10667711 0.160825782 0.19010269 0.05237349
## AAACAGTGTTCCTGGG-1 0.24190862 0.07533104 0.007060598 0.06890341 0.08647337
## AAACATTTCCCGGATT-1 0.06918666 0.17898566 0.041112012 0.06446834 0.07920809

Visualizing SE abundances across Visium spots

The SpatialView function can be used to visualize SE levels across Visium spots.

library(ggplot2)
## attach the spatial coordinates to the matrix for visualization
gg = cbind(sefracs, meta[match(rownames(sefracs), rownames(meta)), ])
gg = as.data.frame(gg)
SpatialView(gg, by = "SE7", X = "imagerow", Y = "imagecol", pt.size = 3.5) +
  scale_color_gradientn(colors = rev(RColorBrewer::brewer.pal(11, "Spectral"))) + 
  coord_fixed()

Session info

The session info allows users to replicate the exact environment and identify potential discrepancies in package versions or configurations that might be causing problems.

## R version 4.4.1 (2024-06-14)
## Platform: aarch64-apple-darwin20
## Running under: macOS 15.6.1
## 
## Matrix products: default
## BLAS:   /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRblas.0.dylib 
## LAPACK: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRlapack.dylib;  LAPACK version 3.12.0
## 
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
## 
## time zone: America/Los_Angeles
## tzcode source: internal
## 
## attached base packages:
## [1] grid      parallel  stats     graphics  grDevices utils     datasets 
## [8] methods   base     
## 
## other attached packages:
##  [1] ggplot2_3.5.1         hdf5r_1.3.11          SpatialEcoTyper_1.0.1
##  [4] NMF_0.28              Biobase_2.64.0        BiocGenerics_0.50.0  
##  [7] cluster_2.1.6         rngtools_1.5.2        registry_0.5-1       
## [10] dplyr_1.1.4           RANN_2.6.2            Matrix_1.7-0         
## [13] data.table_1.16.0     Seurat_5.1.0          SeuratObject_5.0.2   
## [16] sp_2.1-4              googledrive_2.1.1    
## 
## loaded via a namespace (and not attached):
##   [1] RcppAnnoy_0.0.22       splines_4.4.1          later_1.3.2           
##   [4] tibble_3.2.1           polyclip_1.10-7        fastDummies_1.7.4     
##   [7] lifecycle_1.0.4        doParallel_1.0.17      globals_0.16.3        
##  [10] lattice_0.22-6         MASS_7.3-60.2          magrittr_2.0.3        
##  [13] plotly_4.10.4          sass_0.4.9             rmarkdown_2.28        
##  [16] jquerylib_0.1.4        yaml_2.3.10            httpuv_1.6.15         
##  [19] sctransform_0.4.1      spam_2.10-0            spatstat.sparse_3.1-0 
##  [22] reticulate_1.39.0      cowplot_1.1.3          pbapply_1.7-2         
##  [25] RColorBrewer_1.1-3     abind_1.4-5            Rtsne_0.17            
##  [28] purrr_1.0.2            circlize_0.4.16        IRanges_2.38.1        
##  [31] S4Vectors_0.42.1       ggrepel_0.9.6          irlba_2.3.5.1         
##  [34] listenv_0.9.1          spatstat.utils_3.1-0   goftest_1.2-3         
##  [37] RSpectra_0.16-2        spatstat.random_3.3-1  fitdistrplus_1.2-1    
##  [40] parallelly_1.38.0      pkgdown_2.1.0          leiden_0.4.3.1        
##  [43] codetools_0.2-20       tidyselect_1.2.1       shape_1.4.6.1         
##  [46] farver_2.1.2           matrixStats_1.4.1      stats4_4.4.1          
##  [49] spatstat.explore_3.3-2 jsonlite_1.8.8         GetoptLong_1.0.5      
##  [52] progressr_0.14.0       ggridges_0.5.6         survival_3.6-4        
##  [55] iterators_1.0.14       systemfonts_1.1.0      foreach_1.5.2         
##  [58] tools_4.4.1            ragg_1.3.2             ica_1.0-3             
##  [61] Rcpp_1.0.13            glue_1.7.0             gridExtra_2.3         
##  [64] xfun_0.52              withr_3.0.1            BiocManager_1.30.25   
##  [67] fastmap_1.2.0          fansi_1.0.6            digest_0.6.37         
##  [70] R6_2.5.1               mime_0.12              textshaping_0.4.0     
##  [73] colorspace_2.1-1       scattermore_1.2        tensor_1.5            
##  [76] spatstat.data_3.1-2    utf8_1.2.4             tidyr_1.3.1           
##  [79] generics_0.1.3         httr_1.4.7             htmlwidgets_1.6.4     
##  [82] uwot_0.2.2             pkgconfig_2.0.3        gtable_0.3.5          
##  [85] ComplexHeatmap_2.20.0  lmtest_0.9-40          htmltools_0.5.8.1     
##  [88] dotCall64_1.1-1        clue_0.3-65            scales_1.3.0          
##  [91] png_0.1-8              spatstat.univar_3.0-1  knitr_1.48            
##  [94] rstudioapi_0.16.0      reshape2_1.4.4         rjson_0.2.22          
##  [97] nlme_3.1-164           curl_5.2.2             cachem_1.1.0          
## [100] zoo_1.8-12             GlobalOptions_0.1.2    stringr_1.5.1         
## [103] KernSmooth_2.23-24     miniUI_0.1.1.1         desc_1.4.3            
## [106] pillar_1.9.0           vctrs_0.6.5            promises_1.3.0        
## [109] xtable_1.8-4           evaluate_0.24.0        magick_2.8.5          
## [112] cli_3.6.3              compiler_4.4.1         rlang_1.1.4           
## [115] crayon_1.5.3           future.apply_1.11.2    labeling_0.4.3        
## [118] plyr_1.8.9             fs_1.6.4               stringi_1.8.4         
## [121] viridisLite_0.4.2      deldir_2.0-4           gridBase_0.4-7        
## [124] munsell_0.5.1          lazyeval_0.2.2         spatstat.geom_3.3-2   
## [127] RcppHNSW_0.6.0         patchwork_1.2.0        bit64_4.5.2           
## [130] future_1.34.0          shiny_1.9.1            highr_0.11            
## [133] ROCR_1.0-11            gargle_1.5.2           igraph_2.0.3          
## [136] bslib_0.8.0            bit_4.5.0