
Package index
- 
          SpatialEcoTyper()
- Identify Spatial EcoTypes from Single-cell Spatial Data (A Single Sample)
- 
          MultiSpatialEcoTyper()
- Integrate Multiple Spatial Transcriptomics Datasets to Identify Conserved Spatial Ecotypes
- 
          IntegrateSpatialEcoTyper()
- Integrate Multiple Spatial Transcriptomics Datasets to Identify Conserved Spatial Ecotypes
- 
          GetSpatialMetacells()
- Construct Spatial Metacells from Single-Cell Spatial Data
- 
          ComputeFCs()
- Compute Cell-Type-Specific Fold Changes (FCs) for Spatial Clusters
- 
          SNF2()
- Enhanced Similarity Network Fusion
- 
          GetPCList()
- Generate Principal Component (PC) List for Spatial Neighborhoods
- 
          GetSNList()
- Construct Cell-Type-Specific Similarity Network
- 
          Integrate()
- Integrate Spatial Clusters From Multiple Samples Via Similarity Network Fusion
Development of SE recovery models
Developing models for recovering spatial ecotypes from single-cell spatial data, scRNA-seq data, Visium spatial data, or bulk tumor expression data.
- 
          CreatePseudobulks()
- Create Pseudo-bulk Mixtures
- 
          NMFGenerateW()
- Train SE Deconvolution Model
- 
          NMFGenerateWList()
- Train Cell Type-Specific NMF Models for Recovering Spatial EcoTypes
SE recovery
Recovering spatial ecotypes from single-cell spatial transcriptomics, scRNA-seq, Visium, or bulk tumor expression data.
- 
          RecoverSE()
- Recovery of SEs Using Pretrained NMF Models
- 
          DeconvoluteSE()
- Infer SE Abundances Using a Pretrained NMF Model
- 
          NMFpredict()
- Prediction Using Pretrained NMF Model
- 
          nmfClustering()
- Robust Clustering via NMF (non-negative matrix factorization)
- 
          SpatialView()
- Visualize Spatial Landscape of Cells / Spots
- 
          HeatmapView()
- Draw Heatmap
- 
          drawRectangleAnnotation()
- Draw Rectangle Annotations
- 
          getColors()
- Generate a List of Colors
- 
          PreprocessST()
- Preprocess Spatial Transcriptomics Data
- 
          AnnotateCells()
- Extract Spatial Ecotype Annotations for Single Cells
- 
          Znorm()
- Weighted / Unweighted Uni-variance Normalization
- 
          rankSparse()
- Transform a Sparse Matrix to Rank Space (Rank Non-zeros in Each Column)
- 
          matrixMultiply()
- Matrix Multiplication with Minibatching and Parallel Processing
- 
          fillspots()
- Handle Missing Values
- 
          mostFrequent()
- Identify the most frequent category in a vector