
Package index
-
SpatialEcoTyper() - Identify Spatial EcoTypes from Single-cell Spatial Data (A Single Sample)
-
MultiSpatialEcoTyper() - Integrate Multiple Spatial Transcriptomics Datasets to Identify Conserved Spatial Ecotypes
-
IntegrateSpatialEcoTyper() - Integrate Multiple Spatial Transcriptomics Datasets to Identify Conserved Spatial Ecotypes
-
GetSpatialMetacells() - Construct Spatial Metacells from Single-Cell Spatial Data
-
ComputeFCs() - Compute Cell-Type-Specific Fold Changes (FCs) for Spatial Clusters
-
SNF2() - Enhanced Similarity Network Fusion
-
GetPCList() - Generate Principal Component (PC) List for Spatial Neighborhoods
-
getSN() - Construct Similarity Network
-
GetSNList() - Construct Cell-Type-Specific Similarity Network
-
Integrate() - Integrate Spatial Clusters From Multiple Samples Via Similarity Network Fusion
Development of SE recovery models
Developing models for recovering spatial ecotypes from single-cell spatial data, scRNA-seq data, Visium spatial data, or bulk tumor expression data.
-
CreatePseudobulks() - Create Pseudo-bulk Mixtures
-
NMFGenerateW() - Train SE Deconvolution Model
-
NMFGenerateWList() - Train Cell Type-Specific NMF Models for Recovering Spatial EcoTypes
SE recovery
Recovering spatial ecotypes from single-cell spatial transcriptomics, scRNA-seq, Visium, or bulk tumor expression data.
-
RecoverSE() - Recovery of SEs Using Pretrained NMF Models
-
DeconvoluteSE() - Infer SE Abundances Using a Pretrained NMF Model
-
NMFpredict() - Prediction Using Pretrained NMF Model
-
nmfClustering() - Robust Clustering via NMF (non-negative matrix factorization)
-
SpatialView() - Visualize Spatial Landscape of Cells / Spots
-
HeatmapView() - Draw Heatmap
-
drawRectangleAnnotation() - Draw Rectangle Annotations
-
getColors() - Generate a List of Colors
-
PreprocessST() - Preprocess Spatial Transcriptomics Data
-
AnnotateCells() - Extract Spatial Ecotype Annotations for Single Cells
-
Znorm() - Weighted / Unweighted Uni-variance Normalization
-
rankSparse() - Transform a Sparse Matrix to Rank Space (Rank Non-zeros in Each Column)
-
matrixMultiply() - Matrix Multiplication with Minibatching and Parallel Processing
-
fillspots() - Handle Missing Values
-
mostFrequent() - Identify the most frequent category in a vector