Package index
-
SpatialEcoTyper()
- Identify Spatial EcoTypes from Single-cell Spatial Data (A Single Sample)
-
MultiSpatialEcoTyper()
- Integrate Multiple Spatial Transcriptomics Datasets to Identify Conserved Spatial Ecotypes
-
IntegrateSpatialEcoTyper()
- Integrate Multiple Spatial Transcriptomics Datasets to Identify Conserved Spatial Ecotypes
-
GetSpatialMetacells()
- Construct Spatial Metacells from Single-Cell Spatial Data
-
ComputeAvgs()
- Compute Cell-Type-Specific Average Expression of Spatial Clusters
-
SNF2()
- Enhanced Similarity Network Fusion
-
GetPCList()
- Generate Principal Component (PC) List for Spatial Microregions
-
GetSNList()
- Construct Cell-Type-Specific Similarity Network
-
Integrate()
- Integrate Spatial Clusters From Multiple Samples Via Similarity Network Fusion
Development of SE recovery models
Developing models for recovering spatial ecotypes from single-cell spatial data, scRNA-seq data, Visium spatial data, or bulk tumor expression data.
-
CreatePseudobulks()
- Create Pseudo-bulk Mixtures
-
NMFGenerateW()
- Train SE Deconvolution Model
-
NMFGenerateWList()
- Train Cell Type-Specific NMF Models for Recovering Spatial EcoTypes
SE recovery
Recovering spatial ecotypes from single-cell spatial data, scRNA-seq data, Visium spatial data, or bulk tumor expression data.
-
RecoverSE()
- Recovery of SEs Using Pretrained NMF Models
-
DeconvoluteSE()
- Infer SE Abundances Using Pretrained NMF Model
-
NMFpredict()
- Prediction Using Pretrained NMF Model
-
nmfClustering()
- Robust Clustering via NMF (non-negative matrix factorization)
-
SpatialView()
- Visualize Spatial Landscape of Cells / Spots
-
HeatmapView()
- Draw Heatmap
-
drawRectangleAnnotation()
- Draw Rectangle Annotations
-
getColors()
- Generate a List of Colors
-
PreprocessST()
- Preprocess Spatial Transcriptomics Data
-
AnnotateCells()
- Extract Spatial Ecotype Annotations for Single Cells
-
Znorm()
- Weighted / Unweighted Uni-variance Normalization
-
rankSparse()
- Transform a Sparse Matrix to Rank Space (Rank Non-zeros in Each Column)
-
matrixMultiply()
- Matrix Multiplication with Minibatching and Parallel Processing
-
fillspots()
- Handle Missing Values
-
mostFrequent()
- Identify the most frequent category in a vector