Skip to contents

Discovery of spatial ecotypes (SEs)

SpatialEcoTyper()
Identify Spatial EcoTypes from Single-cell Spatial Data (A Single Sample)
MultiSpatialEcoTyper()
Integrate Multiple Spatial Transcriptomics Datasets to Identify Conserved Spatial Ecotypes
IntegrateSpatialEcoTyper()
Integrate Multiple Spatial Transcriptomics Datasets to Identify Conserved Spatial Ecotypes
GetSpatialMetacells()
Construct Spatial Metacells from Single-Cell Spatial Data
ComputeAvgs()
Compute Cell-Type-Specific Average Expression of Spatial Clusters
SNF2()
Enhanced Similarity Network Fusion
GetPCList()
Generate Principal Component (PC) List for Spatial Microregions
GetSNList()
Construct Cell-Type-Specific Similarity Network
Integrate()
Integrate Spatial Clusters From Multiple Samples Via Similarity Network Fusion

Development of SE recovery models

Developing models for recovering spatial ecotypes from single-cell spatial data, scRNA-seq data, Visium spatial data, or bulk tumor expression data.

CreatePseudobulks()
Create Pseudo-bulk Mixtures
NMFGenerateW()
Train SE Deconvolution Model
NMFGenerateWList()
Train Cell Type-Specific NMF Models for Recovering Spatial EcoTypes

SE recovery

Recovering spatial ecotypes from single-cell spatial data, scRNA-seq data, Visium spatial data, or bulk tumor expression data.

RecoverSE()
Recovery of SEs Using Pretrained NMF Models
DeconvoluteSE()
Infer SE Abundances Using Pretrained NMF Model
NMFpredict()
Prediction Using Pretrained NMF Model

NMF (Non-negative Matrix Factorization) clustering

Clustering via NMF.

nmfClustering()
Robust Clustering via NMF (non-negative matrix factorization)

Visualization

SpatialView()
Visualize Spatial Landscape of Cells / Spots
HeatmapView()
Draw Heatmap
drawRectangleAnnotation()
Draw Rectangle Annotations
getColors()
Generate a List of Colors

Data processing

PreprocessST()
Preprocess Spatial Transcriptomics Data
AnnotateCells()
Extract Spatial Ecotype Annotations for Single Cells
Znorm()
Weighted / Unweighted Uni-variance Normalization
rankSparse()
Transform a Sparse Matrix to Rank Space (Rank Non-zeros in Each Column)
matrixMultiply()
Matrix Multiplication with Minibatching and Parallel Processing
fillspots()
Handle Missing Values
mostFrequent()
Identify the most frequent category in a vector