Skip to contents

Overview

In this tutorial, we will illustrate how to recover spatial ecotypes (SEs) from single-cell RNA-seq data.

First load required packages for this vignette

Data preparation

The recovery process requires a normalized gene expression matrix and a vector of cell type annotations.

Starting from a Seurat object

A seurat object for the demo data can be accessed from WU2161_seurat_obj.rds.

drive_deauth() # Disable Google sign-in requirement
drive_download(as_id("11ORWQxxWCNUtceEDwu2IyBpDMa6P-bxS"), "WU2161_seurat_obj.rds", overwrite = TRUE)

First, load the seurat object into R:

# Load the seurat object
obj <- readRDS("WU2161_seurat_obj.rds")
obj
## An object of class Seurat 
## 27425 features across 1337 samples within 1 assay 
## Active assay: RNA (27425 features, 2000 variable features)
##  3 layers present: counts, data, scale.data
##  2 dimensional reductions calculated: pca, umap
# Cell type annotations
unique(obj$CellType)
## [1] "Macrophage" "B"          "CD4T"       "CD8T"       "Other"     
## [6] "Fibroblast" "Epithelial" "Plasma"

Next, normalize the gene expression data using SCTransform or NormalizeData. Here, we are normalizing using SCTransform. We recommend to install the glmGamPoi package for faster computation.

if(!"glmGamPoi" %in% installed.packages()){
  BiocManager::install("glmGamPoi")
}
obj <- SCTransform(obj, verbose = FALSE)

Then, extract the normalized gene expression matrix and cell type annotations from the Seurat object.

seurat_version = as.integer(gsub("\\..*", "", as.character(packageVersion("SeuratObject"))))
if(seurat_version<5){
  normdata <- GetAssayData(obj, "data")
}else{
  normdata <- obj[["SCT"]]$data
}
head(normdata[, 1:5])
## 6 x 5 sparse Matrix of class "dgCMatrix"
##            AAACCTGCACATGACT-1 AAACCTGGTGGTCCGT-1 AAACCTGGTTTGTGTG-1
## AL627309.1                  .                  .                  .
## AL627309.5                  .                  .                  .
## AP006222.2                  .                  .                  .
## LINC01409                   .                  .                  .
## LINC01128                   .                  .                  .
## LINC00115                   .                  .                  .
##            AAACCTGTCCGATATG-1 AAACCTGTCTAACGGT-1
## AL627309.1                  .                  .
## AL627309.5                  .                  .
## AP006222.2                  .                  .
## LINC01409                   .                  .
## LINC01128                   .                  .
## LINC00115                   .                  .
ctann = obj$CellType
head(ctann)
## AAACCTGCACATGACT-1 AAACCTGGTGGTCCGT-1 AAACCTGGTTTGTGTG-1 AAACCTGTCCGATATG-1 
##       "Macrophage"                "B"             "CD4T"       "Macrophage" 
## AAACCTGTCTAACGGT-1 AAACGGGCACTTAAGC-1 
##                "B"             "CD8T"
table(ctann)
## ctann
##          B       CD4T       CD8T Epithelial Fibroblast Macrophage      Other 
##         97        138        425        121         44        374         91 
##     Plasma 
##         47
Starting from Sparse matrix

Sparse matrix in the .mtx format can be imported using the ReadMtx function from the Seurat package. The demo data can be accessed from WU2161. The cell type annotations are available in WU2161_celltype_ann.tsv.

## Load the gene expression matrix
scdata = ReadMtx(mtx = "matrix.mtx", features = "features.tsv", 
                 cells = "barcodes.tsv", feature.column = 1, cell.column = 1)

## Normalize the data
normdata = NormalizeData(scdata)
head(normdata[, 1:5])
## Load cell type annotation
ctann = read.table("WU2161_celltype_ann.tsv", sep = "\t", 
                   header = TRUE, row.names = 1)
ctann = ctann[match(colnames(normdata), rownames(ctann)), 1]
table(ctann)
Starting from tab-delimited files

Tab-delimited files can be loaded into R using the fread function from the data.table package. The TSV file for the expression matrix can be accessed from WU2161_counts.tsv and the cell type annotations are available in WU2161_celltype_ann.tsv.

## Download data from google drive
drive_download(as_id("17VAeOnz6vTt2s0ZeTrK1kITdJ3Yus4ei"), "WU2161_counts.tsv", overwrite = TRUE)
drive_download(as_id("17Ax4LMOClMBu6h_WUcwXtFw4HuIU8_AQ"), "WU2161_celltype_ann.tsv", overwrite = TRUE)
## Load the gene expression matrix
scdata = fread("WU2161_counts.tsv", sep = "\t", data.table = FALSE)
rownames(scdata) = scdata[, 1] ## Set the first column as row names
scdata = scdata[, -1] ## Drop the first column

## Normalize the data
normdata = NormalizeData(scdata)
head(normdata[, 1:5])
##            AAACCTGCACATGACT-1 AAACCTGGTGGTCCGT-1 AAACCTGGTTTGTGTG-1
## AL627309.1                  0                  0                  0
## AL627309.5                  0                  0                  0
## AP006222.2                  0                  0                  0
## AC114498.1                  0                  0                  0
## AL669831.2                  0                  0                  0
## LINC01409                   0                  0                  0
##            AAACCTGTCCGATATG-1 AAACCTGTCTAACGGT-1
## AL627309.1          0.0000000                  0
## AL627309.5          0.2951209                  0
## AP006222.2          0.0000000                  0
## AC114498.1          0.0000000                  0
## AL669831.2          0.0000000                  0
## LINC01409           0.0000000                  0
## Load cell type annotation
ctann = read.table("WU2161_celltype_ann.tsv", sep = "\t", 
                   header = TRUE, row.names = 1)
ctann = ctann[match(colnames(normdata), rownames(ctann)), 1]
table(ctann)
## ctann
##          B       CD4T       CD8T Epithelial Fibroblast Macrophage      Other 
##         97        138        425        121         44        374         91 
##     Plasma 
##         47

SE recovery

The RecoverSE function will be used to assign single cells into SEs. Users can either use default model to recover predefined SEs or use custom model to recover newly defined SEs.

Note: When using RecoverSE with single-cell RNA-seq data, it is essential to specify the celltypes parameter. If cell type annotations are not provided, the function will assume that the input data corresponds to bulk spatial transcriptomics (e.g., Visium), and will infer SE abundances from each spot.

Using default models

The default NMF models were trained on discovery MERSCOPE data, encompassing five cancer types: melanoma, and four carcinomas. These models are tailored to nine distinct cell types: B cells, CD4+ T cells, CD8+ T cells, NK cells, plasma cells, macrophages, dendritic cells, fibroblasts, and endothelial cells. Each model facilitates the recovery of SEs from single-cell datasets, allowing for cell-type-specific SE analysis.

For SE recovery, the cells in the query data should be grouped into one of “B”, “CD4T”, “CD8T”, “NK”, “Plasma”, “Macrophage”, “DC”, “Fibroblast”, and “Endothelial”, case sensitive. All the other cell types will be considered non-SE compartments.

sepreds <- RecoverSE(normdata, celltypes = ctann)
head(sepreds)
## AAACCTGCACATGACT-1 AAACCTGGTGGTCCGT-1 AAACCTGGTTTGTGTG-1 AAACCTGTCCGATATG-1 
##              "SE8"            "nonSE"              "SE1"              "SE8" 
## AAACCTGTCTAACGGT-1 AAACGGGCACTTAAGC-1 
##            "nonSE"            "nonSE"
Using custom models

To use custom models, users should first develop recovery models following the tutorial Development of SE Recovery Models. The resulting models can be used for SE recovery. An example model is available at SE_Recovery_W_list.rds.

Download the example models

drive_download(as_id("171WaAe49babYB85Cn1FcoNNE-lzYp1T_"), "SE_Recovery_W_list.rds", overwrite = TRUE)

Load the custom models

Ws <- readRDS("SE_Recovery_W_list.rds")
names(Ws) ## named list of W matrices
## [1] "CD4T"        "CD8T"        "DC"          "Endothelial" "Fibroblast" 
## [6] "Macrophage"  "NK"          "Plasma"
head(Ws[[1]]) ## feature by SE matrix
##                  SE01      SE02      SE03      SE04      SE05      SE06
## CD226__pos  0.4145936 0.2555579 0.3323735 0.3241147 0.2263783 0.3279133
## CDKN1B__pos 0.5729663 0.4552065 0.5120732 0.4627805 0.4453117 0.5156023
## CXCR4__pos  0.5865790 0.2771225 0.4093821 0.3607076 0.3589891 0.3937211
## DUSP1__pos  0.4233067 0.3462390 0.2269798 0.1616814 0.3265539 0.2562118
## KLF2__pos   0.5889618 0.2314586 0.3867504 0.2295206 0.2998234 0.5173246
## ICAM2__pos  0.4593230 0.2611751 0.4427930 0.3143084 0.3679498 0.4532637
##                  SE07      SE08      SE09      SE10      SE11
## CD226__pos  0.2189382 0.3417897 0.2563481 0.2360192 0.2815938
## CDKN1B__pos 0.4414750 0.4747166 0.4414508 0.3922732 0.3821411
## CXCR4__pos  0.3751669 0.4456410 0.3023204 0.2629156 0.2729461
## DUSP1__pos  0.3682236 0.2211759 0.1713413 0.1699067 0.1121763
## KLF2__pos   0.3570251 0.4327206 0.1732251 0.2086729 0.2118797
## ICAM2__pos  0.2660441 0.5494585 0.2878338 0.3711269 0.2575091

Using custom models for SE recovery by specifying the Ws argument.

sepreds <- RecoverSE(normdata, celltypes = ctann, Ws = Ws)
head(sepreds)
## AAACCTGCACATGACT-1 AAACCTGGTGGTCCGT-1 AAACCTGGTTTGTGTG-1 AAACCTGTCCGATATG-1 
##             "SE10"            "nonSE"             "SE01"             "SE10" 
## AAACCTGTCTAACGGT-1 AAACGGGCACTTAAGC-1 
##            "nonSE"             "SE03"

Session info

The session info allows users to replicate the exact environment and identify potential discrepancies in package versions or configurations that might be causing problems.

## R version 4.4.1 (2024-06-14)
## Platform: aarch64-apple-darwin20
## Running under: macOS 15.1
## 
## Matrix products: default
## BLAS:   /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRblas.0.dylib 
## LAPACK: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRlapack.dylib;  LAPACK version 3.12.0
## 
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
## 
## time zone: America/Los_Angeles
## tzcode source: internal
## 
## attached base packages:
## [1] parallel  stats     graphics  grDevices utils     datasets  methods  
## [8] base     
## 
## other attached packages:
##  [1] SpatialEcoTyper_0.0.5 NMF_0.28              Biobase_2.64.0       
##  [4] BiocGenerics_0.50.0   cluster_2.1.6         rngtools_1.5.2       
##  [7] registry_0.5-1        RANN_2.6.2            Matrix_1.7-0         
## [10] googledrive_2.1.1     data.table_1.16.0     Seurat_5.1.0         
## [13] SeuratObject_5.0.2    sp_2.1-4              ggplot2_3.5.1        
## [16] dplyr_1.1.4          
## 
## loaded via a namespace (and not attached):
##   [1] RcppAnnoy_0.0.22            splines_4.4.1              
##   [3] later_1.3.2                 tibble_3.2.1               
##   [5] polyclip_1.10-7             fastDummies_1.7.4          
##   [7] lifecycle_1.0.4             doParallel_1.0.17          
##   [9] globals_0.16.3              lattice_0.22-6             
##  [11] MASS_7.3-60.2               magrittr_2.0.3             
##  [13] plotly_4.10.4               sass_0.4.9                 
##  [15] rmarkdown_2.28              jquerylib_0.1.4            
##  [17] yaml_2.3.10                 httpuv_1.6.15              
##  [19] glmGamPoi_1.16.0            sctransform_0.4.1          
##  [21] spam_2.10-0                 spatstat.sparse_3.1-0      
##  [23] reticulate_1.39.0           cowplot_1.1.3              
##  [25] pbapply_1.7-2               RColorBrewer_1.1-3         
##  [27] zlibbioc_1.50.0             abind_1.4-5                
##  [29] GenomicRanges_1.56.1        Rtsne_0.17                 
##  [31] purrr_1.0.2                 circlize_0.4.16            
##  [33] GenomeInfoDbData_1.2.12     IRanges_2.38.1             
##  [35] S4Vectors_0.42.1            ggrepel_0.9.6              
##  [37] irlba_2.3.5.1               listenv_0.9.1              
##  [39] spatstat.utils_3.1-0        goftest_1.2-3              
##  [41] RSpectra_0.16-2             spatstat.random_3.3-1      
##  [43] fitdistrplus_1.2-1          parallelly_1.38.0          
##  [45] DelayedMatrixStats_1.26.0   pkgdown_2.1.0              
##  [47] DelayedArray_0.30.1         leiden_0.4.3.1             
##  [49] codetools_0.2-20            tidyselect_1.2.1           
##  [51] shape_1.4.6.1               UCSC.utils_1.0.0           
##  [53] matrixStats_1.4.1           stats4_4.4.1               
##  [55] spatstat.explore_3.3-2      jsonlite_1.8.8             
##  [57] GetoptLong_1.0.5            progressr_0.14.0           
##  [59] ggridges_0.5.6              survival_3.6-4             
##  [61] iterators_1.0.14            systemfonts_1.1.0          
##  [63] foreach_1.5.2               tools_4.4.1                
##  [65] ragg_1.3.2                  ica_1.0-3                  
##  [67] Rcpp_1.0.13                 glue_1.7.0                 
##  [69] SparseArray_1.4.8           gridExtra_2.3              
##  [71] xfun_0.47                   MatrixGenerics_1.16.0      
##  [73] GenomeInfoDb_1.40.1         withr_3.0.1                
##  [75] BiocManager_1.30.25         fastmap_1.2.0              
##  [77] fansi_1.0.6                 digest_0.6.37              
##  [79] R6_2.5.1                    mime_0.12                  
##  [81] textshaping_0.4.0           colorspace_2.1-1           
##  [83] scattermore_1.2             tensor_1.5                 
##  [85] spatstat.data_3.1-2         utf8_1.2.4                 
##  [87] tidyr_1.3.1                 generics_0.1.3             
##  [89] S4Arrays_1.4.1              httr_1.4.7                 
##  [91] htmlwidgets_1.6.4           uwot_0.2.2                 
##  [93] pkgconfig_2.0.3             gtable_0.3.5               
##  [95] ComplexHeatmap_2.20.0       lmtest_0.9-40              
##  [97] XVector_0.44.0              htmltools_0.5.8.1          
##  [99] dotCall64_1.1-1             clue_0.3-65                
## [101] scales_1.3.0                png_0.1-8                  
## [103] spatstat.univar_3.0-1       knitr_1.48                 
## [105] rstudioapi_0.16.0           reshape2_1.4.4             
## [107] rjson_0.2.22                nlme_3.1-164               
## [109] curl_5.2.2                  cachem_1.1.0               
## [111] zoo_1.8-12                  GlobalOptions_0.1.2        
## [113] stringr_1.5.1               KernSmooth_2.23-24         
## [115] miniUI_0.1.1.1              desc_1.4.3                 
## [117] pillar_1.9.0                grid_4.4.1                 
## [119] vctrs_0.6.5                 promises_1.3.0             
## [121] xtable_1.8-4                evaluate_0.24.0            
## [123] cli_3.6.3                   compiler_4.4.1             
## [125] rlang_1.1.4                 crayon_1.5.3               
## [127] future.apply_1.11.2         plyr_1.8.9                 
## [129] fs_1.6.4                    stringi_1.8.4              
## [131] viridisLite_0.4.2           deldir_2.0-4               
## [133] gridBase_0.4-7              munsell_0.5.1              
## [135] lazyeval_0.2.2              spatstat.geom_3.3-2        
## [137] RcppHNSW_0.6.0              patchwork_1.2.0            
## [139] sparseMatrixStats_1.16.0    future_1.34.0              
## [141] shiny_1.9.1                 SummarizedExperiment_1.34.0
## [143] ROCR_1.0-11                 gargle_1.5.2               
## [145] igraph_2.0.3                bslib_0.8.0